Lecture 12: Identity Testing and Poissonization

Lecturer: Jasper Lee Scribe: Avery Li

1 Identity Testing (Generalization of Uniformity Testing)

We begin with an explicitly known distribution $\mathbf{q} = (q_1, \ldots, q_n)$ on [n], given m i.i.d samples from \bf{p} over [n], we want to test if

- $p = q$
- $d_{TV}(\mathbf{p}, \mathbf{q}) \geq \epsilon$

with probability $\geq 2/3$. As it turns out, the sample complexity required is still $\Theta\left(\frac{\sqrt{n}}{2}\right)$ $\sqrt{\frac{n}{\epsilon^2}}\bigg).$

2 Tester Construction

To solve this problem in traditional statistics, Pearson's χ^2 test is used:

$$
\tilde{Z} = \sum_{i \in [n]} \frac{(N_i - mq_i)^2}{mq_i}
$$

where N_i is the number of occurrences of domain element i, m is the sample complexity, and q_i is the probability mass of domain element under the known distribution \mathbf{q} . The issue with attempting to use and analyze \tilde{Z} is that the terms can have a large variance.

Algorithm 12.1 Identity Tester

- 1. Draw $k \sim \text{Poi}(m)$ samples from **p**
- 2. For each $i \in [n]$, let N_i be the number of times we see element i
- 3. Compute $A = \{i \in [n] \mid q_i \geq \frac{\epsilon}{50}\}$ $\frac{\epsilon}{50n}\}$
- 4. Compute $Z = \sum_{i \in A} \frac{(N_i mq_i)^2 N_i}{mq_i}$ $\overline{mq_i}$
- 5. Accept if $Z \leq \frac{m\epsilon^2}{10}$, otherwise reject

Intuitively, modifying the χ^2 statistic is fine because the difference is not that far from χ^2 . We begin by examining the test statistic:

$$
Z = \sum_{i \in A} \frac{(N_i - mq_i)^2 - N_i}{mq_i}
$$

The algorithm accepts if $Z \n\t\leq m\epsilon^2/10$. First we examine the expectation of the Z when $\mathbf{p} = \mathbf{q},$

$$
\mathbb{E}[Z] = \sum_{i \in A} \frac{N_i}{mq_i} \Rightarrow \mathbb{E}[\tilde{Z}] = \sum_{i \in A} \frac{mp_i}{mq_i} = \sum_{i \in A} \frac{mq_i}{mq_i} = |A| \le n
$$

This modification of the χ^2 statistic is designed to better control variance as opposed to the traditional χ^2 test where variance cannot be controlled. Example: Consider the following setting:

$$
\mathbf{p} = \mathbf{q} : q_1 = 1 - \frac{1}{n}, q_i = \frac{1}{n(n-1)}
$$

Take $m \ll n$ samples, with high probability we only observe elements $i \neq 1$ either 0 or 1 times. For these rare events:

$$
\frac{(N_i - mq_i)^2}{mq_i} \approx \frac{N_i^2}{mq_i} = \begin{cases} 0 & \text{if } N_i = 0\\ \Theta(n) & \text{if } N_i = 1 \text{ (even when } m \approx n) \end{cases}
$$

While any individual element may not be sampled, for large enough m , one of these elements will be sampled, which implies high variance. Compare this to the modified statistic where for $N_i = 0, 1$ we get

$$
\frac{(N_i - mq_i)^2 - N_i}{mq_i} \approx \frac{N_i^2 - N_i}{mq_i} = 0.
$$

3 Poissonization (Poisson Sampling)

If a distribution is far from uniform, we should be able to detect the case using Z , through its mean difference from the uniform case, and bounding Z's variance to separate it from the uniform case. A key challenge is that $\{N_i\}$ are not independent because $\sum N_i =$ m. This makes calculating $Var[Z]$ difficult, as we need to account for covariance and we cannot use tail bounds. Instead of drawing a fixed number of samples, we can instead use Poissonization:

- 1. Pick $k \sim \text{Poi}(m)$
- 2. Draw k samples from p

We do not need to worry about the number of samples being too large because for large m , $Poi(m)$ is well-concentrated (Homework 1).

Proposition 12.2. Suppose we draw $Poi(m)$ samples from p . Then:

- 1. $N_i \sim \text{Poi}(m p_i)$
- 2. $\{N_i\}$ are independent

This result is not immediately obvious and the proof will not be covered here. Also note that a Poissonised tester using Poisson samples can be simulated by a normal tester taking at most $2m$ samples, failing immediately when greater than $2m$ samples are made. This fails with at most $poly(1/m)$ more probability. This means we can run the standard tester without Poissonization.

4 Algorithm Analysis

Theorem 12.3. Running Algorithm 12.1 on input $Poi(m = O(n))$ \sqrt{n} $\frac{\sqrt{n}}{\epsilon^2})$) samples, tests identity to q vs ϵ -far from q with probability $\geq 2/3$.

By Proposition 12.2, N_i are independent Poi (mp_i) . We have access to Z and want to test if \bf{p} is ϵ -far away from \bf{q} . The general layout of the proof is to calculate and bound the expectation and variance of Z and establish a gap for the ϵ -far case for some constant probability.

Proposition 12.4.

$$
\mathbb{E}[Z] = m \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i} = m \chi^2(p_A || q_A)
$$

$$
\text{Var}[Z] = \sum_{i \in A} \left[2\frac{p_i^2}{q_i} + 4mp_i(p_i - q_i)^2 \right]
$$

Proof.

$$
\mathbb{E}[Z] = \sum_{i \in A} \mathbb{E}\left[\frac{(N_i - mq_i)^2 - N_i}{mq_i}\right]
$$

=
$$
\sum_{i \in A} \frac{\mathbb{E}[N_i^2] - 2mq_i \mathbb{E}[N_i] + m^2 q_i^2 - \mathbb{E}[N_i]}{mq_i}
$$

Observe that for Poisson random variables, $\mathbb{E} = \lambda$, Var = λ , so we can further simplify with $\mathbb{E}[N_i] = mp_i$ and $\mathbb{E}[N_i^2] = mp_i + m^2p_i^2$.

$$
\mathbb{E}[Z] = \sum_{i \in A} \frac{mp_i + m^2 p_i^2 - 2m^2 p_i q_i + m^2 q_i^2 - mp_i}{mq_i}
$$

$$
= m \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i}
$$

For the proof of $Var[Z]$, refer to Appendix A of arXiv:1507.05952.

It now suffices to show there is a gap between the expectations between the $p = q$ case and ϵ -far case and that the variance is small enough to separate the two distributions with some constant probability based on the accept-reject criteria in Algorithm 12.1.

 \Box

Lemma 12.5. If $\mathbf{p} = \mathbf{q}$, $\mathbb{E}[Z] = 0$. If $d_{TV}(\mathbf{p}, \mathbf{q}) \ge \epsilon$, $\mathbb{E}[Z] \ge \frac{1}{5}m\epsilon^2$

Proof. For $\mathbf{p} = \mathbf{q}$, note that the summand is 0. An additional claim needed is if $d_{TV}(\mathbf{p}, \mathbf{q}) \geq$ ϵ , then $d_{TV}(\mathbf{p}_A, \mathbf{q}_A) \ge \frac{1}{\sqrt{20}} \epsilon$. When $d_{TV}(\mathbf{p}, \mathbf{q}) \ge \epsilon$:

$$
\chi^2(\mathbf{p}_A||\mathbf{q}_A) \ge \left(\sum_{i \in A} \frac{(p_i - q_i)^2}{q_i}\right) \left(\sum_{i \in A} q_i\right)
$$

$$
\ge \left(\sum_{i \in A} |p_i - q_i| \cdot \frac{\sqrt{q_i}}{\sqrt{q_i}}\right)^2
$$

$$
= 4d_{TV}^2(\mathbf{p}_A, \mathbf{q}_A)
$$

$$
> \frac{1}{5}e^2.
$$

From this we get, $\mathbb{E}[Z] = m\chi^2(\mathbf{p}_A||\mathbf{q}_A) \ge \frac{m\epsilon^2}{5}$ $\frac{\partial \epsilon^2}{\partial 5}$, and we have established an expectation \Box gap.

Lemma 12.6. If there are enough samples, e.g. $m \ge 10^{10} \frac{\sqrt{n}}{c^2}$ $\frac{\sqrt{n}}{\epsilon^2}$ samples:

- $\mathbf{p} = \mathbf{q}$: $\text{Var}[Z] \leq 4n \leq \frac{1}{400}m^2\epsilon^4$
- **p** is ϵ -far from **q**: $\text{Var}[Z] \leq \frac{1}{100} (\mathbb{E}[Z])^2$

The proof of the variance bound will not be covered here.

Proof. Proof of Theorem 12.3: Using Chebyshev's inequality, we can bound the probability of Z deviating from its expectation:

$$
\mathbb{P}(Z > \mathbb{E}[Z] + \sqrt{3}\sqrt{\text{Var}[Z]}) \le \frac{1}{3}
$$

$$
\mathbb{P}(Z < \mathbb{E}[Z] - \sqrt{3}\sqrt{\text{Var}[Z]}) \le \frac{1}{3}
$$

For $p = q$, by Lemma 12.5 and 12.6 we have that

$$
\mathbb{E}[Z] + \sqrt{3}\sqrt{\text{Var}[Z]} \leq \frac{1}{10}m\epsilon^2
$$

Therefore, the probability that Algorithm 14.1 does not accept is less than $\frac{1}{3}$. When $d_{TV}(\mathbf{p}, \mathbf{q}) \geq \epsilon$, using Lemmas 12.5 and 12.6:

$$
\mathbb{E}[Z] - \sqrt{3}\sqrt{\text{Var}[Z]} \ge \left(1 - \frac{\sqrt{3}}{10}\right)\mathbb{E}[Z] \ge \frac{1}{10}m\epsilon^2
$$

Therefore, the probability that Algorithm 14.1 does not reject in this case is less than $\frac{1}{3}$, so we are done. \Box

Techniques Used in Proof of Lemma 12.6

- Cauchy-Schwarz
- AM-GM inequality
- $||x||_1 \le ||x||_2$ (relationship between L1 and L2 norms)