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Lecture 12: Identity Testing and Poissonization

Lecturer: Jasper Lee Scribe: Avery Li

1 Identity Testing (Generalization of Uniformity Testing)

We begin with an explicitly known distribution q = (g1, . .., ¢n) on [n], given m i.i.d samples
from p over [n], we want to test if

ep=q
o dry(p,q) > €

with probability > 2/3. As it turns out, the sample complexity required is still @(g)

2 Tester Construction

To solve this problem in traditional statistics, Pearson’s x? test is used:
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i€[n] mei

where N; is the number of occurrences of domain element i, m is the sample complexity,
and ¢; is the probability mass of domain element under the known distribution q. The issue
with attempting to use and analyze Z is that the terms can have a large variance.

Algorithm 12.1 Identity Tester

1. Draw k ~ Poi(m) samples from p

2. For each i € [n], let N; be the number of times we see element 4

3. Compute A= {i € [n] | ¢ > =5}
Ni—mg;)>—N;

4. Compute Z =3, 4 %

5. Accept if Z < ”1‘82, otherwise reject

Intuitively, modifying the y? statistic is fine because the difference is not that far from
x2. We begin by examining the test statistic:

7 Z (N; —mg;)* = Ni
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The algorithm accepts if Z < me?/10. First we examine the expectation of the Z when
b=aq,
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This modification of the x? statistic is designed to better control variance as opposed to the
traditional x? test where variance cannot be controlled.
Example: Consider the following setting:

Take m < n samples, with high probability we only observe elements ¢ # 1 either 0 or 1
times. For these rare events:

(N@ —mql-)Q ~ ]\fl2 o

0 ifN;=0
mg; mg;

O(n) if N; =1 (even when m = n)

While any individual element may not be sampled, for large enough m, one of these elements
will be sampled, which implies high variance. Compare this to the modified statistic where
for N; = 0,1 we get
(Ni — mgi)* = N ~ N} — N;
mg; mq;

=0.

3 Poissonization (Poisson Sampling)

If a distribution is far from uniform, we should be able to detect the case using Z, through
its mean difference from the uniform case, and bounding Z’s variance to separate it from
the uniform case. A key challenge is that {N;} are not independent because Y N; =
m. This makes calculating Var[Z] difficult, as we need to account for covariance and we
cannot use tail bounds. Instead of drawing a fixed number of samples, we can instead use
Poissonization:

1. Pick k& ~ Poi(m)
2. Draw k samples from p

We do not need to worry about the number of samples being too large because for large m,
Poi(m) is well-concentrated (Homework 1).

Proposition 12.2. Suppose we draw Poi(m) samples from p. Then:
1. N; ~ Poi(mp;)
2. {N;} are independent

This result is not immediately obvious and the proof will not be covered here. Also note
that a Poissonised tester using Poisson samples can be simulated by a normal tester taking
at most 2m samples, failing immediately when greater than 2m samples are made. This
fails with at most poly(1/m) more probability. This means we can run the standard tester
without Poissonization.



4 Algorithm Analysis

Theorem 12.3. Running Algorithm 12.1 on input Poi(m = O(g)) samples, tests identity
to q vs e-far from q with probability > 2/3.

By Proposition 12.2, N; are independent Poi(mp;). We have access to Z and want to
test if p is e-far away from q. The general layout of the proof is to calculate and bound
the expectation and variance of Z and establish a gap for the e-far case for some constant
probability.

Proposition 12.4.
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Proof.
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Observe that for Poisson random variables, E = A, Var = A, so we can further simplify with
E[Ni] = mp; and E[N7] = mp; +m?p;.
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For the proof of Var[Z], refer to Appendix A of arXiv:1507.05952. O

It now suffices to show there is a gap between the expectations between the p = q case
and e-far case and that the variance is small enough to separate the two distributions with
some constant probability based on the accept-reject criteria in Algorithm 12.1.

Lemma 12.5. If p=q, E[Z] = 0. If drv(p,q) > €, E[Z] > 1 mé?

Proof. For p = q, note that the summand is 0. An additional claim needed is if d7y (p,q) >
€, then dry(pa,q4) > \/%e. When dry(p,q) > e

X(pallaa) > (Z ; ' > (Z‘h)
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From this we get, E[Z] = mx?(p4llas) > %62, and we have established an expectation
gap. [
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Lemma 12.6. If there are enough samples, e.g. m > 10775 samples:

e p=aq: Var[Z] < 4n < Zsm2e!
e p is e-far from q: Var[Z] < 135(E[Z])?
The proof of the variance bound will not be covered here.

Proof. Proof of Theorem 12.3: Using Chebyshev’s inequality, we can bound the probability
of Z deviating from its expectation:

P(Z > E[Z] + V3\/Var[Z]) <
P(Z <E[Z] - V3\/Var[Z]) <

For p = q, by Lemma 12.5 and 12.6 we have that
E[Z] + V3y/Var[Z] < TlomGQ

Therefore, the probability that Algorithm 14.1 does not accept is less than % When
drv(p,q) > €, using Lemmas 12.5 and 12.6:

E[Z] — V/3\/Var[Z] > (1 - ‘f) E[Z] > %Omez

W =Wl

Therefore, the probability that Algorithm 14.1 does not reject in this case is less than %, SO
we are done. O

Techniques Used in Proof of Lemma 12.6

e Cauchy-Schwarz
e AM-GM inequality

e ||z|]1 < ||z||2 (relationship between L1 and L2 norms)



	Identity Testing (Generalization of Uniformity Testing)
	Tester Construction
	Poissonization (Poisson Sampling)
	Algorithm Analysis

